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Abstract. We study a generalized two-species model on a ring. The original model (Mallick K
1996J. Phys. A: Math. Gen.29 5375) describes ordinary particles hopping exclusively in one
direction in the presence of an impurity. The impurity hops with a rate different from that of
ordinary particles and can be overtaken by them. Here we let the ordinary particles also hop
backward with rateq. Using the matrix product ansatz we obtain the relevant quadratic algebra. A
finite-dimensional representation of this algebra enables us to compute the stationary bulk density
of the ordinary particles, as well as the speed of impurity on a set of special surfaces of the parameter
space. We will obtain the phase structure of this model in the accessible region and show how the
phase structure of the original model is modified. In the infinite-volume limit this model presents
a shock in one of its phases.

1. Introduction

Recently, much attention has been focused on one-dimensional reaction–diffusion processes.
These models can describe many physical phenomena such as hopping conductivity, growth
processes and traffic flows [2–4]. They are also of interest from the mathematical point of view
due to their relation to integrable quantum chain Hamiltonians [5, 6]. The simplest model of
this kind is the asymmetric simple exclusion process (ASEP) with open boundaries [7]. This
model comprises particles which jump independently to their right with hard core repulsion
along a one-dimensional lattice. The open boundary conditions mean that particles are injected
at one end of the lattice and are removed at the opposite end. This model exhibits a shock
structure in the density profile of particles. In periodic boundary conditions, the microscopic
location of the shock can be identified by defining a second-class particle (impurity). The
ASEP in the presence of an impurity on a ring has been studied in the two following cases:

(1) In the first case, the single impurity hops in the opposite direction relative to the ordinary
particles [8, 9]. In this case a first-order phase transition between a low-density and a
traffic-jam phase is observed.

(2) In the second case, the impurity moves in the same direction as the ordinary particles [1,18].
The phase diagram of this model consists of six distinctive phases (I)–(VI) in which two of
them are symmetric to other phases under a charge conjugation and reflection symmetry.
The authors have shown that one phase exists in the system in which the impurity causes
a shock.
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Another example of such driven diffusive systems is the partially asymmetric simple
exclusion process (PASEP). In this model the particles are allowed to jump both to their
immediate right (with ratep) or left (with rateq) site, if the target site is not already occupied.
This model has been extensively studied both with open boundaries and on a ring [10].

In this paper we will study the effects of the presence of a single impurity on the PASEP
on a ring. Here, the ordinary particles can hop to their immediate right (left) site, provided
that it is empty, with rate 1(q 6 1). The single impurity can only hop to its immediate right
site (if it is not already occupied) with rateα (61) and can be exchanged from the left with
the ordinary particles with rateβ (61). For q = 0 this model reduces to the model (2) as
discussed above. Using the matrix product ansatz (MPA) introduced in [11], we obtain the
relevant quadratic algebra which has both finite- and infinite-dimensional representations. For
simplicity, we adopt a finite-dimensional representation of the algebra and carry out all the
calculations using a grand canonical ensemble in which the population of ordinary particles
can fluctuate. By adjusting the fugacities of the ordinary particles and of the holes, one can
produce some fixed densities for them. Although the finite-dimensional representation restricts
us to the region under the surfaceα + β + q = 1 in the three-dimensional parameter space,
nevertheless we shall find the exact phase structure and calculate precisely the density profile
of ordinary particles and the speed of impurity in this region. With these exact results, we
will show that three phases exist in this region. In two of them, which are symmetric to each
other under a charge conjugation and reflection symmetry, the density profile of particles has
an exponential behaviour. We will determine the relevant correlation lengths in these phases
and the critical values of the rates that characterize the divergence of these correlation lengths.
In the third phase the density profile of the ordinary particles is linear which is a signature of
a shock.

This paper is organized as follows. In section 2 we will describe the model. In section 3
we will write the weights of the configurations in the stationary state in terms of a trace ofL+1
non-commuting matrices and obtain the quadratic algebra. In section 4 we will introduce all
possible representations of the quadratic algebra and discuss different phases in the accessible
region of the phase space. In section 5, using one- and two-dimensional representations of the
algebra we will obtain some exact results for an infinite system. In the last section we will
compare our results with those obtained in [1] forq = 0.

2. The model

The model proposed here contains two species of particles on a closed ring ofL+1 sites which
are labelled from 1 toL + 1. We specify each configuration of the system by anL + 1-tuple
(τ1, τ2, . . . , τL+1), whereτi = 1 if site i is occupied with a particle of kind 1,τi = 2 if it is
occupied with a particle of kind 2, andτi = 0 if site i is empty. There areM particles of kind
1, and only one particle of kind 2 on the ring. We will refer to them as ordinary particles and
impurity, respectively.

The system evolves under stochastic dynamics. The possible exchanges between two
adjacent sites during a time interval dt are as follows:

10→ 01 with rate 1

01→ 10 with rateq

20→ 02 with rateα

12→ 21 with rateβ.

The space of configuration is connected. Each configuration can evolve into any other
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and, therefore, it has a unique stationary state [19]. As we mentioned above, we will perform
all the calculations in the grand canonical ensemble and let the number of ordinary particles
fluctuate around a mean value. The above process can be mapped onto the one introduced
in [12] by interchanging the impurity and vacancies(2⇐⇒ 0). It can also be considered as a
special case of the three-species diffusion problems introduced in [13].

3. The stationary measure and the quadratic algebra

According to the matrix product formalism, the stationary probabilityP({τ }) of any
configuration{τ } can be written as a trace of a product of non-commuting operators. Since
this model is translationally invariant, one can always keep the single impurity at siteL + 1
and write the normalized weightP({τ }) in terms of three operatorsD, E andA:

P({τ }) = P({τ1, τ2, . . . , τL, τL+1 = 2}) = 1

ZL
Tr

[ L∏
i=1

(xτiD + y(1− τi)E)A
]
. (1)

The non-zero real variables,x andy, are the fugacities of ordinary particles and vacancies,
respectively. In the grand canonical ensemble approach, one must choose the value of the
fugacities to fix the density of ordinary particles to beρ = M

L
. Although it would be sufficient

to introduce only one fugacity (since the total number of sites ‘L + 1’ is fixed), we use both
of them to make the symmetry between ordinary particles and vacancies more apparent. The
normalization factorZL in the denominator of equation (1), which plays a role analogous to
the partition function in equilibrium statistical mechanics, is a fundumental quantity and can
be calculated using the fact

∑
{τ } P({τ1, . . . , τL, τL+1}) = 1. Thus one finds

ZL =
∑

all configurations

Tr

[ L∏
i=1

(xτiD + y(1− τi)E)A
]
= Tr(CLA) (2)

in whichC = xD + yE. The operatorsD, E andA satisfy the following quadratic algebra:

DE − qED = D +E (3)

βDA = A (4)

αAE = A. (5)

Following [14], we writeA as|V 〉〈W |, which converts the above relations into

DE − qED = D +E (6)

D|V 〉 = 1

β
|V 〉 (7)

〈W |E = 1

α
〈W |. (8)

With this assumption, the calculation of Tr(. . .) in expression (2) reduces to the calculation
of a matrix element

ZL = 〈W |CL|V 〉. (9)

In the next section we will investigate all possible representations of (6)–(8).

4. Representations of the quadratic algebra

In [15] the Fock representation of the most general quadratic algebra has been obtained. It has
been shown that in order to have a finite-dimensional representation of certain quadratic alge-
bras, the parameters of the model, sayα, β andq in (6)–(8), should satisfy a set of constraints.
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Figure 1. Plot of equation (11).

The algebra (6)–(8) has a one-dimensional representation forα, β, q < 1, where the
operatorsD, E andA are represented by real numbers. Here the vectors|V 〉 and〈W | can be
discarded and one is dealing with a scalar product state in (9). This representation exists if

D = 1

β
E = 1

α
A = 1 (10)

and the following constraint holds:

α + β + q = 1. (11)

In figure 1 we have ploted (11) in the three-dimensional parameters space.
For the finite-dimensional representations, one can easily check that the following

matrices [16]:

D = 1

1− q


1 +a 0 0 · ·

0 1 +aq 0 · ·
0 0 1 +aq2 0 ·
· · · · ·
· · 0 1 +aqn−2 0
· · 0 0 1 +aqn−1

 (12)

E = 1

1− q



1 + 1
a

0 0 · ·
1 1 + 1

aq
0 · ·

0 1 1 + 1
aq2 0 ·

· · · · ·
· · 1 1 + 1

aqn−2 0

· · 0 1 1 + 1
aqn−1

 (13)

form ann-dimensional representation of (6), wherea is an arbitrary parameter. The vectors
|V 〉 and〈W | are also found to be

|V 〉 =


1
0
·
·
·
0

 |W 〉 =


1
ω2

ω3

·
·
ωn

 ωi =
i−2∏
j=0

1

a

(
1

qn−1
− 1

qj

)
i = 2, . . . , n.

(14)
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Figure 2. Plots of equation (16) forn = 2 (a) andn = 5 (b).

The parametera is then fixed as follows:

a = 1− q − β
β

= 1
1−q−α
α

qn−1
(15)

where α, β, q < 1. Equation (15) then provides the following constraint between the
parametersα, β andq:(

1− q − β
β

)(
1− q − α

α

)
= q1−n. (16)

Note that forn = 1 the above constraint reduces to (11). Using (16) it can be verified
that forq < 1, the region of the phase space which is accessible by the totality of all finite-
dimensional(n > 2) representations is

α + β + q < 1. (17)

In figure 2 we have plotted (16) for two values ofn. One can see that as the dimension of
representation increases from 2, the two-dimensional surface (16) begins to approach towards
theq axis. Therefore, the finite-dimensional representation of the algebra (6)–(8) allows us
to derive exact results for this model only on some special surfaces given by (16). However,
using the same conjecture proposed in [16], one can introduce a kind of analytical continuation
to obtain results valid in the whole accessible region given by (17).

As we will see in the next section the speed of impurity and density profile of ordinary
particles on the ring depend on the asymptotic behaviour of the expression (9) in thermodynamic
limit (L,M −→ ∞, the densityρ = M

L
being constant). On the other hand, the asymptotic

behaviour ofZL in this limit is governed by the largest eigenvalue ofC. In what follows we will
show that in the region specified by (17),ZL can possess only three different asymptotic values
in the thermodynamic limit, i.e. only three phases can exist in which the speed of impurity and
density profile of ordinary particles are given by different expressions. Noting that the fugacity
of ordinary particlesx and vacanciesy remain constant in the largeL limit, the eigenvaluesξi of

C = xD + yE

= 1

1− q


(x + y) + xa + y

a
0 · ·

y (x + y) + xaq + y

aq
0 ·

· · · ·
· 0 y (x + y) + xaqn−1 + y

aqn−1


(18)
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can readily be computed

ξi = 1

1− q
{
(x + y) + xaqi−1 +

y

aqi−1

}
i = 1, . . . , n. (19)

We notice that all the eigenvalues ofC lie on the curve [16]

z −→ 1

1− q
(
(x + y) + xz +

y

z

)
in whichz = a, aq, . . . , aqn−1. Since the fugacitiesx andy are positive, this implies that the
largest eigenvalueξmax of C takes one of the following values:

(I) ξmax= ξ1, if ξ1 > ξn, or, equivalently,x( 1−q−β
β

) > y(
1−q−α
α

)

(II) ξmax= ξn, if ξn > ξ1, or, equivalently,x( 1−q−β
β

) < y(
1−q−α
α

)

(III) ξmax= ξ1 = ξn, if ξ1 = ξn, or, equivalently,x( 1−q−β
β

) = y( 1−q−α
α

).

As we mentioned above these three different cases correspond to different phases in
the region (17), distinguished by different expressions for the speed of impurity and density
profile. By using (18) one can see that in the regions (I) and (II)C is diagonalizable, therefore,
we expect that all correlation functions of form〈τi1 . . . τiL+1〉 depend exponentially on the
distances involved. In these regions one obtains the following asymptotic form forZL in the
thermodynamic limit [16]:

ZL = 〈W |CL|V 〉 ' ξLi 〈W |ξi〉〈ξi |V 〉
in which i = 1 andn for the phases (I) and (II), respectively. The vector|ξi〉 (〈ξi |) is the
corresponding right (left) eigenvector ofC. In the region (III) the eigenvalues ofC coincide

ξk = ξn−k+1 = 1

1− q
{
(x + y) + y

(
1− q − α

α

)
(qk−1 + qn−k)

}
k = 1, . . . , n. (20)

In this case, sinceC has an off-diagonal line (see (18)), it is not diagonalizable. Hence it
implies an algebraic behaviour of all correlation functions (see discussions in [17]). One can
also find the following expression forZL for large system sizes in this phase [16]:

ZL = 〈W |CL|V 〉 ' LξL

in whichξ = ξ1 = ξn. In the next section we will show these explicitly for a two-dimensional
representation.

The process is invariant when the direction of motion is reversed and the following
transformations are applied:

Particle of kind 1−→ Particle of kind 0 (Vacancy)

Site numberi −→ Site numberL + 1− i
ρ −→ 1− ρ
α −→ β.

Now considering that the interchange ofx andy is equivalent to the exchange of the density
of ordinary particles and vacancies, (I) is symmetric to (II) under these transformations.

The algebra (6)–(8) also has infinite-dimensional representations [13, 15] and by using
them one has access to the entire phase space without any constraints on the parameters. Since
the calculations for these representations seem to be very difficult, we shall adopt one and
two-dimensional representations to study the general behaviour of some interesting quantities,
such as the density profile of ordinary particles and the speed of impurity in different phases.
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5. One- and two-dimensional representations. Exact results

As mentioned in the previous section, usingn-dimensional representations(n > 2), only
the regionα + β + q < 1 is accessible, where three phases exist. One-dimensional
representation (10) limits us to that part of phase space given by the constraint (11). On
this two-dimensional surface, the partition function (9) has a simple form

ZL =
(
x

β
+
y

α

)L
. (21)

The mean value of density of the ordinary particles which is defined by

ρ = x

L

d

dx
lnZL (22)

can easily be evaluated

ρ =
x
β

x
β

+ y

α

. (23)

If ρi denotes the expectation that sitei is occupied with an ordinary particle in the stationary
state, knowing that the only impurity is at siteL + 1, we have

ρi = xTr(Ci−1DCL−iA)
Tr(CLA)

= x 〈W |C
i−1DCL−i |V 〉
〈W |CL|V 〉 . (24)

Consequently, using (10) and (23), we are able to evaluate the density profile of ordinary
particles in this case

ρi = ρ. (25)

In figure 3 we have plotted the phase diagram of the model for a constantq. The accessible
region (17) lies under the lineα + β = 1− q. On this line each configuration has the same
stationary probability and mean field results become exact. In the stationary state, the speed
of impurity v can be expressed as

v = yαTr(ECL−1A)

Tr(CL)
− xβ Tr(CL−1DA)

Tr(CL)
= (y − x)ZL−1

ZL
(26)

when use has been made of the algebraic relations (6)–(8). Using (21), (23) and (26) the speed
of impurity is found to be

v = α − (1− q)ρ. (27)

One may also note that forα > (1− q)ρ, (27) becomes negative, i.e. the impurity starts
moving backward. This can easily be understood from the fact that whenever an ordinary
particle appears behind the impurity, it overtakes the impurity while pushing it backward (see
section 2). Thus, when the density of ordinary particles exceeds a critical valueρc = α

1−q , a
macroscopic negative current of impurity evolves in the system.

Now we will consider a two-dimensional representation. The following matrices:

D =
( 1
β

i√
q

0 β+q
β

)
E =

( 1
α

0
i√
q

α+q
α

)
(28)

with the vectors

|V 〉 =
(

1
0

)
|W 〉 =

(
1
0

)
(29)

satisfy (6)–(8), if the following relation holds:

(q + α)(q + β) = q. (30)
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Figure 3. The phase diagram.

Forn = 2, this representation is equivalent to (12)–(14) and (30) concides with (16). As
we saw, the properties of the matrix

C =
( x
β

+ y

α
xi√
q

yi√
q

x(
β+q
β
) + y(α+q

α
)

)
(31)

is of prime importance in determining the phase structre of the model. The eigenvalues ofC

can easily be computed

ξ1 = x

β
+
(
1 +

q

α

)
y ξ2 =

(
1 +

q

β

)
x +

y

α
.

These eigenvalues also coincide with those obtained from (19) forn = 2. Forξ1 6= ξ2,
one can introduce

U = 1√
i√
q
(y(

1−q−α
α

)− x( 1−q−β
β

))

( xi√
q
−y 1−q−α

α

i√
q
− 1−q−β

β

)
(32)

to diagonalizeC

UCU−1 =
(
ξ1 0
0 ξ2

)
and using (9) and (29) we obtain the following expresion forZL:

ZL =
x(

1−q−β
β

)ξL1 − y( 1−q−α
α

)ξL2

x(
1−q−β
β

)− y( 1−q−α
α

)
. (33)

In the thermodynamic limit, two cases can be distinguished. The first case, corresponding
to phase (I), is specified withξ1 > ξ2, where the first term in (33) becomes dominant. The
mean density of ordinary particles (22) can be evaluated as

ρ =
x
β

x
β

+ y(1 + q

α
)
. (34)

The inequalityξ1 > ξ2 can be written in terms ofρ as

α > (1− q)(1− ρ)
which withα + β + q < 1 define the boundaries of the phase (I) (see figure 3). In theq → 0
limit, this phase corresponds to phase (VI) of the model studied in [1]. Using (24), (28)–(30),
(32) and (34) we obtain

ρ1 = 1− 1

q + α
(1− ρ) ρL = ρ. (35)
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The density profile decreases exponentially fromρ1 toρL. One can define a characteristic
length measuring the range of the effect of the impurity

ξ−1 = ln
q + α

1 +ρ(q − 1)
. (36)

Note that the correlation length diverges asρ −→ 1− α
1−q . ForL� ξ the density profile

of the ordinary particles is of the form

ρi = c1e
−i
ξ + c2e

i−L
ξ + c3 (37)

in which

c1 =
−xy( 1−q−α

α
)(

1−q−α
α
− 1−q−β

β
)

(y
1−q−α
α
− x 1−q−β

β
)ξ2

c2 = x(y − x)
q(y

1−q−α
α
− x 1−q−β

β
)ξ1

c3 = x
x( 1

q
− 1

β

1−q−β
β

) + y(1− q − α)(β+q
β
)

q(y
1−q−α
α
− x 1−q−β

β
)ξ1

.

Using (26), (33) and (34) we find the following expression for the speed of impurity in
phase (I):

v = α

q + α
− (1− q)ρ. (38)

One observes that forρ > 1−q−β
1−q , the average speed of the single impurity again becomes

negative. It can easily be checked that in theq → 0 limit the values ofρ1, ρL andv approach
to their corresponding values in the phase (VI) of [1]. Next, we will examine the second phase
which is characterized withξ2 > ξ1. This phase is symmetric to phase (I) and all the results
can be obtained using the transformations introduced in section 4. Finally, the third phase (III)
occurs whenξ1 = ξ2, whereC is not diagonalizable (see (32)). Nevertheless,ZL can be
computed noting that in this caseC can be written as

C =
( x
β

+ y

α
xi√
q

iy√
q

x(
β+q
β
) + y(α+q

α
)

)
=
(
x

β
+
y

α
− x

(
1− q − β

β

))
I +

(
x(

1−q−β
β

) xi√
q

iy√
q

−y( 1−q−α
α

)

)
=
(
x

β
+
y

α
− x

(
1− q − β

β

))
I + S (39)

in which

S2 = 0. (40)

Using this property with (9) and (29) yields

ZL = 〈W |CL|V 〉 =
(
x

(
q + β

β

)
+
y

α

)L+1{
x

(
q + β

β

)
+
y

α
+Lx

[
1− q − β

β

]}
(41)

and the mean value of density of ordinary particles (22) is found to be

ρ =
√
qx + 1

2(1 +q)
√
xy√

qx +
√
qy + (1 +q)

√
xy
. (42)
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The boundaries of the phase (III) (see figure 3) are limited to

α < (1− ρ)(1− q)
β < ρ(1− q)

which can be distinguished forq < 1 using the fact thatx( 1−q−β
β

) = y( 1−q−α
α

), (30) and (42).
The density profile of ordinary particles, as mentioned above, has an algebraic behaviour in
this phase and increases linearly fromρ1 = β

1−q to ρL = 1− α
1−q according to

ρ(z) = β

1− q +

(
1− β + α

1− q
)
z 06 z 6 1. (43)

For q = 0, this phase corresponds to phase (V) in [1] where a shock structure has been
observed for certain values of the densityρ. The linear profile which is the consequence
of a fluctuating shock front, has also been observed in the ASEP and PASEP with open
boundaries [11,15,16]. Here the relationx( 1−q−β

β
) = y( 1−q−α

α
) prevents fixing the fugacities

x andy and we cannot adjust the densityρ given by (42) to the desired value, therefore,
we cannot see a real shock structure in the grand canonical ensemble. The reason is that
relation (22) breaks down in this phase (in the sense that using it one cannot fix the fugacities).
As we will show at the end of this section, the density fluctuations of the ordinary particles in
this phase, remain finite in the thermodynamic limit. The finiteness of the density fluctuations
in open boundary problems predicts the existence of a shock profile. As far as we are using
the grand canonical ensemble for this model on a ring, we can also take the finiteness of the
fluctuations as a sign for the existance of shock. However, to see a sharp shock profile, one has
to go to the canonical ensemble where the density fluctuations disappear in the thermodynamic
limit [20]. The speed of impurity (26) in this phase is of the form

v = α − β (44)

which is independent ofρ. Note that forβ > α the speed of impurity again becomes negative.
One can check that in this phase the values ofρ1, ρL andv approach their corresponding values
in the phase (V) inq → 0 limit.

The fluctuation in the density of ordinary particles which is given by [18][
x

L

d

dx

(
x

L

d

dx
lnZL

)] 1
2

(45)

can also be calculated in each phase. Using (33) one can easily check that, in the large-L limit,
these fluctuations drop to zero as1√

L
in the phases (I) and (II). Therefore, the results of the

grand canonical ensemble agree with those obtained from the canonical one in these phases.
It can also be seen from (41) that in phase (III) the fluctuation in the density is finite. This
means that the equivalence of the canonical and grand canonical ensemble fails in this phase.

6. Comparison and concluding remarks

As we mentioned in section 2, this model can be considered as a simple generalization of the
model studied in [1]. Here we compare the results obtained there (we call it model A) with
thoes in our model (model B).

For q = 0, the quadratic algebra of model B reduces to the one of model A. Using an
infinite-dimensional representation of this algebra, the author has solved model A exactly and
shown that it possesses six distinctive phases (I)–(VI). Since we have used a finite-dimensional
representation of the quadratic algebra (6)–(8), only the regionα+β+q < 1 lies in the accessible



Partially asymmetric simple exclusion model 1807

region where three phases exist. These phases (I)–(III) correspond to the phases (VI), (IV)
and (V) in model A, respectively. In model A, the density profile of the ordinary particles has
an exponential behaviour in phases (VI) and (VI) but has a shock structure in phase (V). In
phases (I) and (II) of model B, the density profile also has an exponential behaviour but with a
modified correlation length. In region (III) we have obtained a linear profile for the density of
the ordinary particles in the grand canonical ensemble which indicates the presence of a shock
in this phase. From the phase structure point of view, the backward hopping of the ordinary
particles does not change the number of phases at least in the accessible region and only the
co-existance lines are shifted.

In this paper we have used a finite-dimensional representation of the algebra and performed
all the calculations in the grand canonical ensemble which make the calculations rather simple.
It would be interesting to study the regionα + β + q > 1, especially the shock structure in
phase (III), using an infinite-dimensional representation of (6)–(8) in the canonical ensemble.
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